307,099 views
0 votes
0 votes
Is this unsolvable? ​

Is this unsolvable? ​-example-1
User Tim McClure
by
2.7k points

2 Answers

22 votes
22 votes

Every problem has a solution .Lets solve it .

Here given that


\\ \sf\longmapsto x=(y)/(5)

  • Use cross multiplication


\\ \sf\longmapsto y=5x\dots(1)

Now

As its a triangle


\\ \sf\longmapsto 90+x+y=180

  • Put y=5x


\\ \sf\longmapsto 90+x+5x=180


\\ \sf\longmapsto 6x+90=180


\\ \sf\longmapsto 6x=180-90


\\ \sf\longmapsto 6x=90


\\ \sf\longmapsto x=(90)/(6)


\\ \sf\longmapsto x=15

We need not to find y

See the marked angle and x are supplementary angles hence there sum will be 180


\\ \sf\longmapsto x+15=180


\\ \sf\longmapsto x=180-15


\\ \sf\longmapsto x=165

The required angle is 165°.

User Wincy
by
2.9k points
22 votes
22 votes

Answer:


sum \: angle \: of \: a \: triangle \: = 180 \\ here \: 90 + x + y = 180 ....(1)\\ but \: given \: that \: x = (y)/(5) \\ y = 5x .....(2)\\ put \: (2) \: in \: (1) \\ = > 90 + x + 5x = 180 \\ 90 + 6x = 180 \\ 6x = 180 - 90 = 90 \\ 6x = 90 \\ x = (90)/(6) = 15 \: degree \\ angle \: for \: a \: stright \: \: line \: = 180 \\ x + unknown = 180 \\ 15 + unknown = 180 \\ unknown = 180 - 15 = 165 \: degree \\ thank \: you

User Sissonb
by
2.4k points