71.7k views
17 votes
Prove tan2 x sin2 x = tan2 x − sin2 x​

User Shaheed
by
5.6k points

1 Answer

9 votes

Answer:

SEE BELOW

Explanation:

to understand this

you need to know about:

  • trigonometry
  • PEMDAS

tips and formulas:

  • tanA=sinA/cosA
  • sin²A=1-cos²A

let's solve:

L.H.S=


  1. \sf rewrite \: \tan ^(2) (x) \: as \: (sin ^(2)(x) )/( \cos ^(2) (x) ) : \\ \sf \sin^(2) (x). ((sin ^(2)(x) )/( \cos ^(2) (x) ))

  2. \sf rewrite \: si {n}^(2) x \: as \: 1 - co {s}^(2) x : \\ \sf \sin^(2) (x). \{\frac{1 - cos ^(2)(x) }{ {cos}^(2)(x) } \}

  3. \sf \: rewrite: \\ \sf \sin^(2) (x). \{\frac{1 }{ {cos}^(2)(x) } - 1\}

  4. \sf distribute : \\ ( \sin ^(2) (x) )/( \cos ^(2) (x) ) - \sin ^(2) (x) \\ \tan ^(2) (x) - \sin ^(2) (x)

=R.H.S

User Jesse Dhillon
by
5.1k points