53.8k views
4 votes
HELP plz!!!!!

A pigeon was sitting 2 meters from the base of a telephone pole and flew 8 meters to reach
the top of the pole. How tall is the telephone pole? If necessary, round to the nearest tenth,

User Yshk
by
4.0k points

2 Answers

10 votes
The telephone pole is 7.746 meters

First, I draw a right triangle where one leg (leg = sides forming right angle) is x meters, the height of the telephone pole and the other leg is 2 meters - representing where the pigeon sat before flying up the pole. The hypotenuse, is 8 meters long - connecting where the pigeon sat to the top of the telephone pole.

I can use the Pythagorean theorem to solve for b, the high of the telephone pole. The Pythagorean theorem is: a^2 + b^2 = c^2, where a and b are the legs of the triangle and c is the hypotenuse. I can now plug in the numbers: (2)^2 + x^2 = (8)^2
4 + x = 64
x^2 = 60
x = sqrt(60) = 7.746 meters

The height of the telephone pole is around 7.746 meters
User Spandey
by
4.3k points
13 votes

Answer:

the telephone polé is 24ft.

Explanation:

30^2-18^2=b^2

900-324=b^2

576=b^2

\sqrt[576]=sqrt(b^2]

24=b

b=hight of telephone

User Darren Hall
by
4.3k points