198k views
19 votes
Use mathematical induction to prove the statement is true for all positive integers n. 1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = (n(2n-1)(2n+1))/3)

User Jessen
by
8.5k points

1 Answer

13 votes

Answer:

The statement is true is for any
n\in \mathbb{N}.

Explanation:

First, we check the identity for
n = 1:


(2\cdot 1 - 1)^(2) = (2\cdot (2\cdot 1 - 1)\cdot (2\cdot 1 + 1))/(3)


1 = (1\cdot 1\cdot 3)/(3)


1 = 1

The statement is true for
n = 1.

Then, we have to check that identity is true for
n = k+1, under the assumption that
n = k is true:


(1^(2)+2^(2)+3^(2)+...+k^(2)) + [2\cdot (k+1)-1]^(2) = ((k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1])/(3)


(k\cdot (2\cdot k -1)\cdot (2\cdot k +1))/(3) +[2\cdot (k+1)-1]^(2) = ((k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1])/(3)


(k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot [2\cdot (k+1)-1]^(2))/(3) = ((k+1)\cdot [2\cdot (k+1)-1]\cdot [2\cdot (k+1)+1])/(3)


k\cdot (2\cdot k -1)\cdot (2\cdot k +1)+3\cdot (2\cdot k +1)^(2) = (k+1)\cdot (2\cdot k +1)\cdot (2\cdot k +3)


(2\cdot k +1)\cdot [k\cdot (2\cdot k -1)+3\cdot (2\cdot k +1)] = (k+1) \cdot (2\cdot k +1)\cdot (2\cdot k +3)


k\cdot (2\cdot k - 1)+3\cdot (2\cdot k +1) = (k + 1)\cdot (2\cdot k +3)


2\cdot k^(2)+5\cdot k +3 = (k+1)\cdot (2\cdot k + 3)


(k+1)\cdot (2\cdot k + 3) = (k+1)\cdot (2\cdot k + 3)

Therefore, the statement is true for any
n\in \mathbb{N}.

User NikitaBaksalyar
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories