492,870 views
31 votes
31 votes
suppose an object traveling in a straight line has a velocity function given by v(t)= t^2 -8t+ 15 km/hr. Find the displacement and distance traveled by the object from t=2 to t=4 hours.

User Nickal
by
2.8k points

1 Answer

9 votes
9 votes

v=t^2-8t+15

  • It has upper limit 4 and lower limit 2


\boxed{\sf {\displaystyle{\int}^b_a}x^ndx=\left[(x^(n+1))/(n+1)\right]^b_a}


\\ \sf\longmapsto s={\displaystyle{\int}}vdt


\\ \sf\longmapsto s={\displaystyle{\int^4_2}}t^2-8t+15


\\ \sf\longmapsto s=\left[(t^3)/(3)-8(t^2)/(2)+15t\right]^4_2


\\ \sf\longmapsto s=\left[(t^3)/(3)-4t^2+15t\right]^4_2


\\ \sf\longmapsto s=\left((4^3)/(3)-4(4)^2+15(4)\right)-\left((2^3)/(3)-4(2)^2+15(2)\right)


\\ \sf\longmapsto s=\left((64)/(3)-64+60\right)-\left((8)/(3)-16+30\right)


\\ \sf\longmapsto s=\left((64)/(3)-4\right)-\left((8)/(3)+14\right)


\\ \sf\longmapsto s=(64)/(3)-4-(8)/(3)-14


\\ \sf\longmapsto s=(64)/(3)-(8)/(3)-4-14


\\ \sf\longmapsto s=(46)/(3)-18


\\ \sf\longmapsto s=15.3-18

  • Take it +ve


\\ \sf\longmapsto s=|-2.7|


\\ \sf\longmapsto s=2.7km

User Art Spasky
by
2.7k points