Answer:
3.
Explanation:
Implicit differentiation:
x^2 y + (xy)^3 + 3x = 0
x^2 y + x^3y^3 + 3x = 0
Using the product rule:
2x* y + x^2*dy/dx + 3x^2 y^3 + x^3* (d(y^3)/dx) + 3 = 0
2xy + x^2 dy/dx + 3x^2 y^3 + x^3* 3y^2 dy/dx + 3 = 0
dy/dx(x^2 + 3y^2x^3) = (-2xy - 3x^2y^3 - 3)
dy/dx= (-2xy - 3x^2y^3 - 3) / (x^2 + 3y^2x^3)
At the point (-1, 3).
the derivative = (6 - 81 - 3)/(1 -27)
= -78/-26
= 3.