10.5k views
21 votes
For a right triangle if a = 11in , c = 15 in find b

Quickkk please help

User Markvgti
by
3.6k points

2 Answers

14 votes

Answer:


\huge\boxed{ \boxed{ \sf{2 √(26) }}}

Explanation:

to understand this

you need to know about:

  • Pythagoras theorem
  • PEMDAS

tips and formulas:


  • \sf Pythagoras\: theorem:\\ \sf a²+b²=c²

given:

  • a=11 in
  • c=15 in

let's solve:


\sf step - 1 : make \: b \: the \: subject \: of \: the \: equation


  1. \sf \: shift \: {a}^(2) \: to \: the\: left \: hand \: side \: and \: change \: its \: sign : \\ \tt {b}^(2) = {c}^(2) - {a}^(2)

  2. \sf squre \: root \: both \: sides : \\ \tt\sqrt{ {b}^(2) } = \sqrt{ {c}^(2) - {a}^(2) } \\ \tt \: b = \sqrt{ {c}^(2) - {a}^(2) }


\sf step - 2 : sustitute \:the \: value \: of \: c \: and \: a \: then \: simplify


  1. \sf substitute \: the \: given \: value \: of \: c \: and \: b : \\ \tt b = \sqrt{ {15}^(2) - {11}^(2) }

  2. \sf simplify \: squres : \\ \tt b = √(225 - 121)

  3. \sf substract : \\ \tt b = √(104)

  4. \sf simplify \: redica l : \\ \tt b = \sqrt{ {2}^(2) * 26 } \\ \tt \therefore b = 2 √(26)

User Wasmoo
by
3.6k points
3 votes
The answer to this problem is 2√26

15^2-11^2 = 104
sq root 104