Given:
A figure of a circle and two secants on the circle from the outside of the circle.
To find:
The measure of angle KLM.
Solution:
According to the intersecting secant theorem, if two secant of a circle intersect each other outside the circle, then the angle formed on the intersection is half of the difference between the intercepted arcs.
Using intersecting secant theorem, we get
![\angle KLM=(1)/(2)(Arc(JON)-Arc(KM))](https://img.qammunity.org/2022/formulas/mathematics/high-school/eoy8qwdxe0tlv3epkp6m6vim422n0835k6.png)
![(3x-4)=(1)/(2)(271-(x+6))](https://img.qammunity.org/2022/formulas/mathematics/high-school/82ioad61f61q11xbv5q6wjbawknsbngumx.png)
![(3x-4)=(1)/(2)(271-x-6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wmtbn4hu0a3p26b47lew80rmfoxgr9l4jc.png)
Multiply both sides by 2.
![6x-8=265-x](https://img.qammunity.org/2022/formulas/mathematics/high-school/6q940h8lg2qa0dzrfnyxw2zloj1irhdxh3.png)
Isolate the variable x.
![6x+x=265+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/iwj6goeamnmgava82l87n0swesvq27q9eq.png)
![7x=273](https://img.qammunity.org/2022/formulas/mathematics/high-school/s4olnn3yilmp7h9w9ovlxgzyu8lctly66r.png)
Divide both sides by 7.
![x=(273)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ig708t4r4k7sks7c1g13gqownbjxnzetmh.png)
![x=39](https://img.qammunity.org/2022/formulas/mathematics/college/3abzwq5yxz384opnxqfxgc08p2mdyxriw2.png)
Now,
![\angle KLM=(3x-4)^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/zh1fdqf2zupcvx7s79uq04g298opfb5hqm.png)
![\angle KLM=(3(39)-4)^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/gczl0wfkvcgs6frjyhllppaxgwjxaqetv2.png)
![\angle KLM=(117-4)^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/8nhnq14qso271pgoz8l4pxi5rcxaxs72t6.png)
![\angle KLM=113^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/nu9trdcxsojk6xlpfa8nt4t6e334ghxw8k.png)
Therefore, the measure of angle KLM is 113 degrees.