37.3k views
23 votes
Help asap!!! compute $\left(-3\sqrt{128}\right)\left(-4\sqrt{50}\right)$

User Raymi
by
8.5k points

2 Answers

10 votes

Answer:

960

Explanation:

We first simplify both square roots:\begin{align*}

\sqrt{128} &= \sqrt{64\cdot 2} = \sqrt{64}\cdot \sqrt{2} = 8\sqrt{2},\\

\sqrt{50} &= \sqrt{25\cdot 2} = \sqrt{25} \cdot \sqrt{2} = 5\sqrt{2}.

\end{align*}Then, we have\begin{align*}

\left(-3\sqrt{128}\right)\left(-4\sqrt{50}\right) &= \left(-3\cdot 8\sqrt{2}\right)\left(-4\cdot 5\sqrt{2}\right)\\

&=\left(-24\sqrt{2}\right)\left(-20\sqrt{2}\right)\\

&=(-24)(-20)\left(\sqrt{2}\right)^2\\

&=480(2)\\

&=\boxed{960}.

\end{align*}

User Artur Vartanyan
by
8.3k points
9 votes


(-3√(128))(-4√(50))\qquad \begin{cases} 128=2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\\ \qquad 2^6\cdot 2\\ \qquad (2^3)^2\cdot 2\\ 50=5\cdot 5\cdot 2\\ \qquad 5^2\cdot 2 \end{cases} \\\\\\ (-3√((2^3)^2\cdot 2))(-4√(5^2\cdot 2))\implies 12√((2^3)^2\cdot 2)\cdot √(5^2\cdot 2) \\\\\\ 12\cdot 2^3√(2)\cdot 5√(2)\implies 12\cdot 2^3\cdot 5\cdot √(2^2)\implies 12\cdot 2^3\cdot 5\cdot 2\implies 960

User Qjuanp
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories