164k views
11 votes
Find the area of the trapezoid

Find the area of the trapezoid-example-1
User Deangelo
by
4.2k points

2 Answers

8 votes

Explanation:

6+11÷2×8=92 area of trapezoid

User Rovsen
by
4.6k points
13 votes

Answer:


\boxed{\sf{\green{68}}} square centimeters.

Step-by-step explanation:

Here's the required formula to find the area of trapezoid :


{\longrightarrow{\pmb{\sf{A = (b_1 + b_2)/(2) \cdot \: h}}}}


  • \purple\star A = Area

  • \purple\star b₁ = 6 cm

  • \purple\star b₂ = 11 cm

  • \purple\star h = 8 cm

Substituting all the given values in the formula to find the area of trapezoid :


{\longrightarrow{\sf{Area_((Trapezoid)) = (b_1 + b_2)/(2) \cdot \: h}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = (6 + 11)/(2) \cdot \: 8}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = (17)/(2) \cdot \: 8}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = (17)/(2) * 8}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = \frac{17}{\cancel{2}} * \cancel{8}}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = 17 * 4}}}


{\longrightarrow{\sf{Area_((Trapezoid)) = 68}}}


\star{\boxed{\sf{\pink{Area_((Trapezoid)) = 68 \: {cm}^(2)}}}}

Hence, the area of trapezoid is 68 cm².


\rule{300}{2.5}

Find the area of the trapezoid-example-1
User Kartik
by
4.5k points