34.4k views
9 votes
Help me with differentation and integration please!!

Help me with differentation and integration please!!-example-1
User Maye
by
3.0k points

1 Answer

9 votes

Answer:

See below

Explanation:


(d)/(dx) (\tan^3 x) = 3\sec^4 x - 3\sec^2 x

Recall


(d)/(dx)\tan x=\sec^2

Using the chain rule


(dy)/(dx)= (dy)/(du) (du)/(dx)

such that
u = \tan x

we can get a general formulation for


y = \tan^n x

Considering the power rule


\boxed{(d)/(dx) x^n = nx^(n-1)}

we have


(dy)/(dx) =n u^(n-1) \sec^2 x \implies (dy)/(dx) =n \tan^(n-1) \sec^2 x

therefore,


(d)/(dx)\tan^3 x=3\tan^2x \sec^2x

Now, once


\sec^2 x - 1= \tan^2x

we have


3\tan^2x \sec^2x = 3(\sec^2 x - 1) \sec^2x = 3\sec^4x-3\sec^2x

Hence, we showed


(d)/(dx) (\tan^3 x) = 3\sec^4 x - 3\sec^2 x

================================================

For the integration,


$\int \sec^4 x\, dx $

considering the previous part, we will use the identity


\boxed{\sec^2 x - 1= \tan^2x}

thus


$\int\sec^4x\,dx=\int \sec^2 x(\tan^2x+1)\,dx = \int \sec^2 x \tan^2x+\sec^2 x\,dx$

and


$\int \sec^2 x \tan^2x+\sec^2 x\,dx = \int \sec^2 x \tan^2x\,dx + \int \sec^2 x\,dx $

Considering
u = \tan x

and then
du=\sec^2x\ dx

we have


$\int u^2 \, du = (u^3)/(3)+C$

Therefore,


$\int \sec^2 x \tan^2x\,dx + \int \sec^2 x\,dx = (\tan^3 x)/(3)+\tan x + C$


$\boxed{\int \sec^4 x\, dx = (\tan^3 x)/(3)+\tan x + C }$

User DKM
by
3.5k points