124k views
11 votes
Find the greatest solution for x+y when x^2+y^2 = 7, x^3+y^3=10

User Rakhat
by
5.2k points

1 Answer

8 votes

Answer:

4

Explanation:

set


f(x,y)=x+y\\

constrain:


g(x,y)=x^2+y^2 = 7\\h(x,y)=x^3+y^3=10

Partial derivatives:


f_(x)=1\\f_(y) =1 \\g_(x)=2x \\g_(y)=2y\\h_(x)=3x^2 \\h_(y)=3y^2

Lagrange multiplier:


grad(f)=a*grad(g)+b*grad(h)\\


\left[\begin{array}{ccc}1\\1\end{array}\right]=a\left[\begin{array}{ccc}2x\\2y\end{array}\right]+b\left[\begin{array}{ccc}3x^2\\3y^2\end{array}\right]

4 equations:


1=2ax+3bx^2\\1=2ay+3by^2\\x^2+y^2=7\\x^3+y^3=10

By solving:


a=4/9\\b=-2/27\\x+y=4

Second mathod:

Solve for x^2+y^2 = 7, x^3+y^3=10 first:


x=(1)/(2) -(√(13))/(2) \ or \ y=(1)/(2) +(√(13))/(2) \\x=(1)/(2) +(√(13))/(2) \ or \ y=(1)/(2) -(√(13))/(2) \\x+y=-5\ or\ 1 \or\ 4

The maximum is 4

User Weacked
by
5.8k points