Result:
Complex number:
The polar form of z is:
Step-by-step explanation:
z = −2 + 4i
z = 4.4721 · (cos 117o + i · sin 117o)
The polar form of the complex number z = a + bi is:
z = r · (cos θ + i · sin θ)
where, r is the modulus of z and θ is an argument of z. The moduo for a = −2 and b = 4 is:
r = a2 + b2 = · · · = 4.4721 To find argument θ we use one of the following formulas:
b θ=arctan a ifa>0
b o θ=arctan a +180 ifa<0
θ=90o ifa=0andb>0 θ=270o ifa=0andb<0
Inthisexample: a=−2andb=4so:
θ=arctan a +180
θ=arctan 4 +180o −2
b o
θ = arctan (−2) + 180o θ ≈ 117o
Try this website it’s really helped me!
www.mathportal.org/calculators/complex-numbers-calculator/complex-unary-operations-calculator.php?val1=-2&combo1=1&val2=4&rb1=pol&ch2=useDecimals