Answer:
k = 45.95 N/m
Step-by-step explanation:
First, we will find the launch speed of the ball by using the formula for the horizontal range of the projectile.
![R = (v_(o)^(2)\ Sin\ 2\theta)/(g) \\\\v_(o)^(2) = (Rg)/(Sin\ 2\theta)\\](https://img.qammunity.org/2022/formulas/physics/college/wrk11uol1fzq7uho00o5bvq7v9slg5378a.png)
where,
Vo = Launch Speed = ?
R = Horizontal Range = 5.3 m
θ = Launch Angle = 35°
Therefore,
![v_(o)^(2) = ((5.3\ m)(9.81\ m/s^(2)))/(Sin\ 2(35^(o)))\\](https://img.qammunity.org/2022/formulas/physics/college/1s0cg8elorqdtga73gizlcpaz7znvyy5u7.png)
v₀² = 55.33 m²/s²
Now, we know that the kinetic energy gain of ball is equal to the potential energy stored by spring:
![Kinetic\ Energy\ Gained\ By\ Ball = Elastic\ Potential\ Energy\ Stored\ in \ Spring\\(1)/(2)mv_(o)^(2) = (1)/(2)kx^(2)\\\\k = (mv_(o)^(2))/(x^2) \\](https://img.qammunity.org/2022/formulas/physics/college/9hunxfv823bpw8n97it2ih432kuv49mctn.png)
where,
k = spring constant = ?
x = compression = 17 cm = 0.17 m
m = mass of ball = 24 g = 0.024 kg
Therefore,
![k = ((0.024\ kg)(55.33\ m^2/s^2))/((0.17\ m)^2) \\](https://img.qammunity.org/2022/formulas/physics/college/ipb6n8g2g35rjcl93lwcjt945v02gd7fhs.png)
k = 45.95 N/m