165,197 views
16 votes
16 votes
Find the real numbers x&y so that (x^2+2xy)+i(y-1) = (x^2-2x+2y) - i(x+y)​

User Dhvanil
by
3.1k points

1 Answer

14 votes
14 votes

Answer:


\displaystyle x_1 = 2-√(3) \text{ and } y_1 = (√(3)-1)/(2)

Or:


\displaystyle x _ 2 = 2 + √(3) \text{ and } y _ 2 = -(1+√(3))/(2)

Explanation:

We are given the equation:


\displaystyle (x^2 + 2xy) + i(y-1) = (x^2 -2x + 2y) - i(x +y)

And we want to find the values of x and y such that the equation is true.

First, distribute:


\displaystyle (x^2 + 2xy) + i(y-1) = (x^2 -2x + 2y) +i(-x -y)

If two complex numbers are equivalent, their real and imaginary parts are equivalent. Hence:


\displaystyle x^2 + 2xy = x^2 - 2x +2y \text{ and } y - 1 = -x -y

Simplify:


\displaystyle 2xy = -2x +2y \text{ and }x = 1 - 2y

Substitute:


\displaystyle 2(1-2y)y = -2(1-2y) + 2y

Solve for y:


\displaystyle \begin{aligned} 2(y - 2y^2) &= (-2 + 4y) + 2y \\ 2y - 4y^2 &= 6y -2\\ 4y^2 + 4y - 2& = 0 \\ 2y^2 + 2y - 1 &= 0 \\ \end{aligned}

From the quadratic formula:


\displaystyle \begin{aligned} y &= (-(2)\pm√((2)^2 - 4(2)(-1)))/(2(2)) \\ \\ &= (-2\pm√(12))/(4) \\ \\ &= (-2\pm2√(3))/(4)\\ \\ &= (-1\pm√(3))/(2) \end{aligned}

Hence:


\displaystyle y_1 = (-1+√(3))/(2) \text{ or } y_2 = (-1-√(3))/(2)

Then:


\displaystyle x _ 1 = 1 - 2\left((-1+√(3))/(2)\right) = 1 + (1 - √(3)) = 2 - √(3)

And:


\displaystyle x _ 2 = 1 - 2\left((-1-√(3))/(2)\right) = 1 + (1 + √(3)) = 2 + √(3)

In conclusion, the values of x and y are:


\displaystyle x_1 = 2-√(3) \text{ and } y_1 = (√(3)-1)/(2)

Or:


\displaystyle x _ 2 = 2 + √(3) \text{ and } y _ 2 = -(1+√(3))/(2)

User Dren
by
3.2k points