9514 1404 393
Answer:
11. (-1.5, 3)
12. √29, identical lengths, true they are congruent
Explanation:
11. The midpoint is halfway between the end points. On a graph, you can count the grid squares between the ends of the segment and locate the point that is half that number from either end.
Points C and D differ by 2 in the y-direction, so the midpoint will be 1 unit vertically different from either C or D. That is, it will lie on the line y = 3. The segment CD intersects y=3 at x = -1.5, so the midpoint of CD is (-1.5, 3).
If you like, you can calculate the midpoint as the average of the end points:
midpoint CD = (C +D)/2 = ((-4, 4) +(1, 2))/2 = (-3, 6)/2 = (-1.5, 3)
__
12. The exact length can be found using the Pythagorean theorem. The segment is the hypotenuse of a right triangle whose legs are the differences in x- and y-coordinates.
In the previous problem, we observed that the y-coordinates of C and D differed by 2. The x-coordinates differ by 5. Looking at segment AB, we see the same differences: x-coordinates differ by 5 and y-coordinates differ by 2. Then the lengths of each of these segments is ...
AB = CD = √(2² +5²) = √29
a) The exact lengths of segments AB and CD are √29 units.
b) The lengths of the segments are identical
c) It is TRUE that the segments are congruent.