Final answer:
The question involves scientific notation, a method to write large or small numbers succinctly using a coefficient and a power of ten. Scientific notation simplifies arithmetic operations by allowing easy multiplication or division, which involves handling the coefficients and exponents separately.
Step-by-step explanation:
The student's question involves understanding scientific notation, which is a method of writing very large or very small numbers in a compact form. The notation 3.042 × 10², for example, is a number expressed in scientific notation. Scientific notation consists of two parts: a coefficient (in this case, 3.042) and a power of ten (in this case, 10 to the power of 2). To understand scientific notation better, consider that the exponent indicates how many times the number 10 should be multiplied by itself. For instance, 10² signifies 10 squared, or 10 × 10, which equals 100.
When performing operations with numbers in scientific notation, such as multiplication or division, there are certain rules to follow. As shown in the example, to multiply two numbers in scientific notation like 3.2 × 10³ and 2 × 10², you multiply the coefficients (3.2 × 2) and then add the exponents of 10 (3 + 2), giving you the result 6.4 × 10µ.