109k views
3 votes
Evaluate the following integral using trigonometric substitution

Integral underroot dx/ 9-x^2

1 Answer

11 votes

Answer:

The result of the integral is:


\arcsin{((x)/(3))} + C

Explanation:

We are given the following integral:


\int (dx)/(√(9-x^2))

Trigonometric substitution:

We have the term in the following format:
a^2 - x^2, in which a = 3.

In this case, the substitution is given by:


x = asin(\theta)

So


dx = acos(\theta)d\theta

In this question:


a = 3


x = 3sin(\theta)


dx = 3cos(\theta)d\theta

So


\int (3cos(\theta)d\theta)/(√(9-(3sin(\theta))^2)) = \int \frac{3cos(\theta)d\theta}{\sqrt{9 - 9\sin^(2){\theta}}} = \int \frac{3cos(\theta)d\theta}{\sqrt{9(1 - \sin^(\theta))}}

We have the following trigonometric identity:


\sin^(2){\theta} + \cos^(2){\theta} = 1

So


1 - \sin^(2){\theta} = \cos^(2){\theta}

Replacing into the integral:


\int \frac{3cos(\theta)d\theta}{\sqrt{9(1 - \sin^(2){\theta})}} = \int{\frac{3cos(\theta)d\theta}{\sqrt{9\cos^(2){\theta}}} = \int (3cos(\theta)d\theta)/(3cos(\theta)) = \int d\theta = \theta + C

Coming back to x:

We have that:


x = 3sin(\theta)

So


sin(\theta) = (x)/(3)

Applying the arcsine(inverse sine) function to both sides, we get that:


\theta = \arcsin{((x)/(3))}

The result of the integral is:


\arcsin{((x)/(3))} + C

User Batiaev
by
7.9k points