Answer:
The resulting pressure of the gas when its volume decreases is 300 kN/m².
Step-by-step explanation:
Given;
initial volume of the gas, V₁ = 80 L
number of moles of the gas, n = 0.5 moles
initial pressure of the gas, P₁ = 150 kN/m² = 150 kPa
Determine the constant temperature of the gas using ideal gas equation;
PV = nRT
where;
R is ideal gas constant = 8.315 L.kPa/K.mol
T is the constant temperature

When the gas is compressed to half of its volume;
new volume of the gas, V₂ = ¹/₂ V₁
= ¹/₂ x 80L = 40 L
The new pressure, P₂ is calculated as;

Therefore, the resulting pressure of the gas when its volume decreases is 300 kN/m².