43.2k views
13 votes
Find the derivative.

Find the derivative.-example-1
User Lyokolux
by
8.3k points

1 Answer

6 votes

Answer:


\displaystyle f'(x) = \bigg( (1)/(2√(x)) - √(x) \bigg)e^\big{-x}

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Expanding/Factoring

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = (√(x))/(e^x)

Step 2: Differentiate

  1. Derivative Rule [Quotient Rule]:
    \displaystyle f'(x) = ((√(x))'e^x - √(x)(e^x)')/((e^x)^2)
  2. Basic Power Rule:
    \displaystyle f'(x) = ((e^x)/(2√(x)) - √(x)(e^x)')/((e^x)^2)
  3. Exponential Differentiation:
    \displaystyle f'(x) = ((e^x)/(2√(x)) - √(x)e^x)/((e^x)^2)
  4. Simplify:
    \displaystyle f'(x) = ((e^x)/(2√(x)) - √(x)e^x)/(e^(2x))
  5. Rewrite:
    \displaystyle f'(x) = \bigg( (e^x)/(2√(x)) - √(x)e^x \bigg) e^(-2x)
  6. Factor:
    \displaystyle f'(x) = \bigg( (1)/(2√(x)) - √(x) \bigg)e^\big{-x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Itsananderson
by
7.4k points