522,237 views
29 votes
29 votes
Simplify:(x/y+y/x-1)+(x^2/y^2-x/y+1)​

User ClayKaboom
by
3.0k points

2 Answers

19 votes
19 votes

Answer:


= \frac{ - xy + {y}^(4) + {y}^(3) + {x}^(3)y + {x}^(3) - {x}^(2) }{x {y}^(3) + {xy}^(2) - {y}^(3) - {y}^(2) }

Explanation:


( (x)/(y) + (y)/(x - 1) ) + ( \frac{ {x}^(2) }{ {y}^(2) } - (x)/(y + 1) )


\frac{xy * (x - 1) * (y + 1) + {y}^(3) * (y + 1) + {x}^(2) * (x - 1) * (y + 1) - {xy}^(2) * (x - 1)}{ {y}^(2) * (x - 1) * (y + 1)}


\frac{( {x}^(2) y - xy) * (y + 1) + {y}^(4) + {y}^(3) + ( {x}^(3) - {x}^(2) ) * (y + 1) - {x}^(2) {y}^(2) + {xy}^(2) }{( {xy}^(2) - {y}^(2) ) * (y + 1)}


\frac{ {x}^(2) {y}^(2) + {x}^(2) y - {xy}^(2) - xy + {y}^(4) + {y}^(3) + {x}^(3) y + {x}^(3) - {x}^(2)y - {x}^(2) - {x}^(2) {y}^(2) + {xy}^(2) }{( {xy}^(3) + {xy}^(2) - {y}^(3) - {y}^(2) ) }


= \frac{ - xy + {y}^(4) + {y}^(3) + {x}^(3)y + {x}^(3) - {x}^(2) }{x {y}^(3) + {xy}^(2) - {y}^(3) - {y}^(2) }

User Jamie G
by
2.7k points
18 votes
18 votes

Answer:

2

Explanation:

User Avijit Karmakar
by
3.0k points