Ignoring the malformed character, it looks like you're saying you have particle initially located at (1, 1, 3) that travels in a straight line to (5, 9, 4) with initial speed 6 and constant acceleration vector 4i + 8j + k.
Use the fundamental theorem of calculus to determine the velocity function for the particle:

The particle moves in the same direction as the vector
(5i + 9j + 4k) - (i + j + 3k) = 4i + 8j + k
which has magnitude
√(4² + 8² + 1²) = √81 = 9
Normalize the direction vector by dividing it by its magnitude:
(4i + 8j + k)/9 = 4/9 i + 8/9 j + 1/9 k
The particle has initial speed 6, so we must scale this unit vector by a factor of 1/6 to get the initial velocity vector:
6 (4/9 i + 8/9 j + 1/9 k) = 8/3 i + 16/3 j + 2/3 k
Solve for v(t) :



Use the fundamental theorem again to find the position vector r(t) :



