Given:
The angles of a quadrilateral are x°, (x+5)°, (2x-25)° and (x+10)°.
To find:
The value of x.
Solution:
We know that the sum of all interior angles of a quadrilateral is 360°. So,
![x^\circ+(x+5)^\circ+(2x-25)^\circ+(x+10)^\circ=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/jmdpwv9j061u1ffebah3627yj7iqeuof9g.png)
![(5x-10)^\circ=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/8oksp5pg0kfy1vie7yf6a4fx6rnl5ahbyd.png)
It can be written as
![(5x-10)=180](https://img.qammunity.org/2022/formulas/mathematics/high-school/4mh8l3ffc0jmzcwvdbkgmpcvqyfrblm9cu.png)
![5x=180+10](https://img.qammunity.org/2022/formulas/mathematics/high-school/7zm4y4337zmuxm188iipm1wg8byq0z3s8r.png)
![5x=190](https://img.qammunity.org/2022/formulas/mathematics/high-school/98w500h2hkmhd90x5i3vuwe3s93uzip1ok.png)
Divide both sides by 5.
![x=(190)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/v152bgu9h1fnnf8ba6oebrfj0dtvrapr44.png)
![x=38](https://img.qammunity.org/2022/formulas/mathematics/college/uizs4ibv9dr6l8dhmnkrzju6nodxkkr7gz.png)
Therefore, the value of x is 38.