Answer:
k₂ = 5 x 10⁻² s⁻¹
Step-by-step explanation:
Using the Clausis - Clapyron Equation ...
ln(k₁/k₂) = ΔH/R(T₁-T₂/T₁·T₂) => lnk₂ = lnk₁ + ΔH/R(T₁-T₂/T₁·T₂)
k₁ = 6.4 x 10⁻³s⁻¹
ΔH = 33.6 Kj/mole
R = 0.008314 Kj/mol·K
T₁ = 25°C = 298K
T₂ = 75°C = 348K
lnk₂ = ln(6.4 x 10⁻³s⁻¹) + (33.6kj/mol·K/0.008314Kj/mol·K)·[(348K - 298K)/(348K)(298K)] = -3.10s⁻¹
k₂ at 75°C = exp(-3.10) = 5 x 10⁻²s⁻¹ (faster k-value at higher temp)