37,352 views
9 votes
9 votes
Solve for n if nC2=nC4

User Stavros Zavrakas
by
2.7k points

2 Answers

18 votes
18 votes

Answer:

n = 6

Explanation:

There's a secret formula for this:

If nCx = nCy,

Then n = x + y.

Hence, for this question, n = 2 + 4 = 6

User Jagira
by
3.1k points
10 votes
10 votes


\\ \qquad\quad\sf\longmapsto ^nC_2=^nC_4


\boxed{\sf ^nC_r=(n!)/(r!(n-r)!)}


\\ \qquad\quad\sf\longmapsto (n!)/(2!(n-2)!)=(n!)/(4!(n-4)!)


\\ \qquad\quad\sf\longmapsto (1)/(2* 1(n-2)!)=(1)/(4* 3* 2* 1(n-4)(n-3)(n-2)!)


\\ \qquad\quad\sf\longmapsto 2=24(n-4)(n-3)


\\ \qquad\quad\sf\longmapsto 2=24\left\{n(n-3)-4(n-3)\right\}


\\ \qquad\quad\sf\longmapsto 2=24(n^2-3n-4n+12)


\\ \qquad\quad\sf\longmapsto 2=24(n^2-7n+12)


\\ \qquad\quad\sf\longmapsto 2=24n^2-168n+288


\\ \qquad\quad\sf\longmapsto 24n^2-168n=-286


\\ \qquad\quad\sf\longmapsto 24n^2-168n+286=0


\\ \qquad\quad\sf\longmapsto 12n^2-84n+143=0


\\ \qquad\quad\bf\longmapsto n=(7)/(3)\pm (1)/(3)√(3)

User Simone Porcu
by
2.7k points