165k views
9 votes
Dy/dx=2xy/x²+y² solve​

1 Answer

4 votes

Answer:


y=(-1)/(2) \sqrt[]{4x^2+4c_(1)^2} -c_(1)\ or \ (1)/(2) \sqrt[]{4x^2+4c_(1)^2} -c_(1)

Explanation:

As it is first order nonlinear ordinary differential equation

Let y(x) = x v(x)

2xy/(x²+y²)=2v/(v^2+1)

dy=xdv+vdx

dy/dx=d(dv/dx)+v

x(dv/dx)+v=(2v)/(v^2+1)

dv/dx=[(2v)/(v^2+1)-v]/x


(dv)/(dx)=(-(v^2-1)v)/(x(v^2+1))


(v^2+1)/((v^2-1)v)dv=(-1)/(x)dx


(v^2+1)/((v^2-1)v)dv = ∫
(-1)/(x)dx

u=v^2

du=2vdv

Left hand side:


(v^2+1)/(v(v^2-1))dv

=∫
(u+1)/(2u(u-1))du

=
(1)/(2)
((2)/(u-1) -(1)/(u) )du

=
ln(u-1)-(ln(u))/(2) +c

=
ln(v^2-1)-(ln(v^2))/(2)+c

Right hand side:


=-ln(x)

Solve for v:


v=-\frac{-c_(1)+\sqrt{c_(2)+4x^2 } }{2x} \ or \ \frac{-c_(1)+\sqrt{c_(2)+4x^2 } }{2x}\\


y=(-1)/(2) \sqrt[]{4x^2+4c_(1)^2} -c_(1)\ or \ (1)/(2) \sqrt[]{4x^2+4c_(1)^2} -c_(1)

User Chris Frost
by
6.2k points