29.3k views
3 votes
Find the mass of 3.27 x 10^23 molecules of H2SO4. Use 3 significant digits
and put the units.

1 Answer

13 votes

Answer:

Approximately
53.3\; \rm g.

Step-by-step explanation:

Lookup Avogadro's Number:
N_(\rm A) = 6.02* 10^(23)\; \rm mol^(-1) (three significant figures.)

Lookup the relative atomic mass of
\rm H,
\rm S, and
\rm O on a modern periodic table:


  • \rm H:
    1.008.

  • \rm S:
    32.06.

  • \rm O:
    15.999.

(For example, the relative atomic mass of
\rm H is
1.008 means that the mass of one mole of
\rm H\! atoms would be approximately
1.008\! grams on average.)

The question counted the number of
\rm H_2SO_4 molecules without using any unit. Avogadro's Number
N_(\rm A) helps convert the unit of that count to moles.

Each mole of
\rm H_2SO_4 molecules includes exactly
(1\; {\rm mol} * N_\text{A}) \approx 6.02* 10^(23) of these
\rm H_2SO_4 \! molecules.


3.27 * 10^(23)
\rm H_2SO_4 molecules would correspond to
\displaystyle n = (N)/(N_(\rm A)) \approx (3.27 * 10^(23))/(6.02 * 10^(23)\; \rm mol^(-1)) \approx 0.541389\; \rm mol of such molecules.

(Keep more significant figures than required during intermediary steps.)

The formula mass of
\rm H_2SO_4 gives the mass of each mole of
\rm H_2SO_4\! molecules. The value of the formula mass could be calculated using the relative atomic mass of each element:


\begin{aligned}& M({\rm H_2SO_4}) \\ &= (2 * 1.008 + 32.06 + 4 * 15.999)\; \rm g \cdot mol^(-1) \\ &= 98.702\; \rm g \cdot mol^(-1)\end{aligned}.

Calculate the mass of approximately
0.541389\; \rm mol of
\rm H_2SO_4:


\begin{aligned}m &= n \cdot M \\ &\approx 0.541389\; \rm mol * 98.702\; \rm g \cdot mol^(-1)\\ &\approx 53.3\; \rm g\end{aligned}.

(Rounded to three significant figures.)

User Dung Phan
by
3.9k points