Answer:
(E) 13
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Functions
- Function Notation
Calculus
Antiderivatives - Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Rule [Fundamental Theorem of Calculus 2]:
![\displaystyle (d)/(dx)[\int\limits^x_a {f(t)} \, dt] = f(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/idztrky79gppvnfr56mqizrybhxz594si6.png)
Explanation:
Step 1: Define
![\displaystyle \int\limits^4_0 {f'(t)} \, dt = 8](https://img.qammunity.org/2022/formulas/mathematics/college/n41x2m5x7gn9yq0o4wdubrioqocly9vx2z.png)
![\displaystyle f(4) = \text{unknown}](https://img.qammunity.org/2022/formulas/mathematics/college/2m39c2hj5jr6ferwp4dfvpc2bgnaohn1gw.png)
Step 2: Integrate
- [Integral] Evaluate [Integration Rule - FTC 1 and 2]:
![\displaystyle \int\limits^4_0 {f'(t)} \, dt = f(4) - f(0)](https://img.qammunity.org/2022/formulas/mathematics/college/priobj98vfa86nnn6mctqopftbko6vjnib.png)
- [Integral] Substitute in variables [Given/Table]:
![\displaystyle 8 = f(4) - 5](https://img.qammunity.org/2022/formulas/mathematics/college/1caev3cg2h2ez5nwa4bursrac8xp7rh0p8.png)
- [Addition Property of Equality] Isolate f(4):
![\displaystyle 13 = f(4)](https://img.qammunity.org/2022/formulas/mathematics/college/283d9uqrvt83czcbosq9szsx1auw20k4lx.png)
- Rewrite:
![\displaystyle f(4) = 13](https://img.qammunity.org/2022/formulas/mathematics/college/srk17pu60u6wkskuxt4xct9ulo584h1n98.png)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Integration
Book: College Calculus 10e