42.2k views
11 votes
Line segment AB on the coordinate plane stretches from (1,1) to (7,9). Line segment CD stretches from (-2,3) to (2,6). What is the ratio AB:CD of the lengths of these line segments

A. 3:2
B 2:1
C 2:3
D 3:1

User Muzzlator
by
7.5k points

1 Answer

9 votes

Answer:

B 2:1

Explanation:

Distance between two points:

Suppose that we have two points,
(x_1,y_1) and
(x_2,y_2). The distance between them is given by:


D = √((x_2-x_1)^2+(y_2-y_1)^2)

In this question:

The length of the segments are given by the distance between its endpoints.

Line segment AB on the coordinate plane stretches from (1,1) to (7,9).

So its length is:


√((7-1)^2+(9-1)^2) = √(6^2+8^2) = √(100) = 10

Line segment CD stretches from (-2,3) to (2,6).


√((2-(-2))^2+(6-3)^2) = √(4^2+3^2) = √(25) = 5

What is the ratio AB:CD of the lengths of these line segments?

10:5 = 2:1

So the correct answer is given by option B.

User Jit
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.