60.9k views
21 votes
Find the volume of a right circular cone that has a height of 19.9 cm and a base with a radius of 9.6

User Brandt
by
5.1k points

2 Answers

5 votes

Explanation:

Volume of cone = 1/3πr²h

here,

  • Height = 19.9 cm
  • base radius = 9.6cm

Putting the known values ,

Volume =
(1)/(3) * 3.14 * 9.6 {}^(2) * 19.9cm {}^(3)

Volume = 1919.56 cm³

User Blalond
by
5.2k points
5 votes

We are given –

  • Height (h) of cone is = 19.9cm
  • Radius (r) of cone is = 9.6 cm

According to the question, we are asked to find out volume of the cone. As we know –

  • Volume of cone = ⅓ πr²h

Substituting values


\qquad
\purple{\twoheadrightarrow\bf Volume_((Cone)) = (1)/(3) π r^2h}


\qquad
\twoheadrightarrow\sf Volume_((Cone)) = (1)/(3) π* (9.6)² * 19.9


\qquad
\twoheadrightarrow\sf Volume_((Cone)) = (1)/(3) π * 92.16 * 19. 9


\qquad
\twoheadrightarrow\sf Volume_((Cone)) = 96.4608 * 19.9


\qquad
\purple{\twoheadrightarrow\bf Volume_((Cone)) = 1919.57\:cm³}\\


\therefore{\underline{\textsf{ Volume of cone is \textbf{1919.57cm³}}}}

Know More –

  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²

_________________________________________

User Wojciech Kwiatek
by
4.8k points