Given:
The function is
![f(x)=\frac{8\sqrt[3]{x}-8}{9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kt3pqew28hcx0ryb86jh3hjt28ng2dw598.png)
To find:
The inverse function
.
Solution:
We have,
![f(x)=\frac{8\sqrt[3]{x}-8}{9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/kt3pqew28hcx0ryb86jh3hjt28ng2dw598.png)
Step 1: Putting f(x)=y, we get
![y=\frac{8\sqrt[3]{x}-8}{9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/8g28lxdczi8irltkm7ohcsl3gt71uo4nxo.png)
Step 2: Interchange x and y.
![x=\frac{8\sqrt[3]{y}-8}{9}](https://img.qammunity.org/2022/formulas/mathematics/high-school/mwxn2mtmy1j3sjgj4atmw34twl9jmd99eb.png)
Step 3: Isolate variable y.
![9x=8\sqrt[3]{y}-8](https://img.qammunity.org/2022/formulas/mathematics/high-school/pjkb43rtvt8p2okpbhw49a3tyael83kadk.png)
![9x+8=8\sqrt[3]{y}](https://img.qammunity.org/2022/formulas/mathematics/high-school/wclkn2douvrgwdil10rn2cktd65ixsaqhj.png)
![(9x+8)/(8)=\sqrt[3]{y}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tpud76e0a4g7392lc3ai8mf0j5y3y44o7u.png)
Taking cube on both sides, we get


Step 4: Putting
, we get

Therefore, the correct option is C.