6.2k views
6 votes
For the function f(x)

8 Vas - 8. find / -'(X).
9
+8
of-'() = (9)
O/(x) = 9(+8)
O!'(x) = (18)
Of(x) = 9(2+8)
8
Submit Answer

For the function f(x) 8 Vas - 8. find / -'(X). 9 +8 of-'() = (9) O/(x) = 9(+8) O!'(x-example-1
User Krisacorn
by
5.6k points

1 Answer

2 votes

Given:

The function is


f(x)=\frac{8\sqrt[3]{x}-8}{9}

To find:

The inverse function
f^(-1)(x).

Solution:

We have,


f(x)=\frac{8\sqrt[3]{x}-8}{9}

Step 1: Putting f(x)=y, we get


y=\frac{8\sqrt[3]{x}-8}{9}

Step 2: Interchange x and y.


x=\frac{8\sqrt[3]{y}-8}{9}

Step 3: Isolate variable y.


9x=8\sqrt[3]{y}-8


9x+8=8\sqrt[3]{y}


(9x+8)/(8)=\sqrt[3]{y}

Taking cube on both sides, we get


\left((9x+8)/(8)\right)^3=y


y=\left((9x+8)/(8)\right)^3

Step 4: Putting
y=f^(-1)(x), we get


f^(-1)(x)=\left((9x+8)/(8)\right)^3

Therefore, the correct option is C.

User Ashakirov
by
5.6k points