Given:
f(x) is an exponential function.
![f(-3.5)=25, f(6)=33](https://img.qammunity.org/2022/formulas/mathematics/high-school/rmdvait30gcibymk6q08xdn3pq247f64dr.png)
To find:
The value of f(6.5).
Solution:
Let the exponential function is
...(i)
Where, a is the initial value and b is the growth factor.
We have,
. So, put x=-3.5 and f(x)=25 in (i).
...(ii)
We have,
. So, put x=6 and f(x)=33 in (i).
...(iii)
On dividing (iii) by (ii), we get
![(33)/(25)=(ab^(6))/(ab^(-3.5))](https://img.qammunity.org/2022/formulas/mathematics/high-school/do9n6kc5ecogictfohhfp0zta9zoabu2vr.png)
![1.32=b^(9.5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5i70ah7iyl7x1o2972atj4i8ikofxlamup.png)
![(1.32)^{(1)/(9.5)}=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/pydhst69prf4xpdab9gswbt3zf9wm7rz6u.png)
![1.0296556=b](https://img.qammunity.org/2022/formulas/mathematics/high-school/7s43gm5enrllbwvciefvo5r79mwcgfrta5.png)
![b\approx 1.03](https://img.qammunity.org/2022/formulas/mathematics/high-school/poktvmjdhkct1ncgurbixwp2h4jhukwdxi.png)
Putting b=1.03 in (iii), we get
![33=a(1.03)^(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/vwyh0cacuiqhfojfn1w1r4vdq2kj8jrz0q.png)
![33=a(1.194)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pbenunarxy3wlq56l0tbs7sc6z5tx2842q.png)
![(33)/(1.194)=a](https://img.qammunity.org/2022/formulas/mathematics/high-school/qw09btjvd4u6ph0lny7hk3nugjt3rq8kie.png)
![a\approx 27.63](https://img.qammunity.org/2022/formulas/mathematics/high-school/sth9ewbftl2bq0du5bz98vt4j3k6xz84x7.png)
Putting a=27.63 and b=1.03 in (i), we get
![f(x)=27.63(1.03)^x](https://img.qammunity.org/2022/formulas/mathematics/high-school/k2bdm6oibz8seh1p40tlo4yhvvgcnhc5dk.png)
Therefore, the required exponential function is
.