137,754 views
38 votes
38 votes
Let z=3+i,

then find
a. Z²
b. |Z|
c.
√(Z)
d.  Polar form of z​

User Jon Preece
by
2.9k points

2 Answers

20 votes
20 votes

Given z = 3 + i, right away we can find

(a) square

z ² = (3 + i )² = 3² + 6i + i ² = 9 + 6i - 1 = 8 + 6i

(b) modulus

|z| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(z) = arctan(1/3)

Then

z = |z| exp(i arg(z))

z = √10 exp(i arctan(1/3))

or

z = √10 (cos(arctan(1/3)) + i sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

z = √(√10) exp(i arctan(1/3) / 2)

and

z = √(√10) exp(i (arctan(1/3) + 2π) / 2)

Then in standard rectangular form, we have


\sqrt z = \sqrt[4]{10} \left(\cos\left(\frac12 \arctan\left(\frac13\right)\right) + i \sin\left(\frac12 \arctan\left(\frac13\right)\right)\right)

and


\sqrt z = \sqrt[4]{10} \left(\cos\left(\frac12 \arctan\left(\frac13\right) + \pi\right) + i \sin\left(\frac12 \arctan\left(\frac13\right) + \pi\right)\right)

We can simplify this further. We know that z lies in the first quadrant, so

0 < arg(z) = arctan(1/3) < π/2

which means

0 < 1/2 arctan(1/3) < π/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have


\cos\left(\frac12 \arctan\left(\frac13\right)\right) = \sqrt{\frac{1+\cos\left(\arctan\left(\frac13\right)\right)}2}


\sin\left(\frac12 \arctan\left(\frac13\right)\right) = \sqrt{\frac{1-\cos\left(\arctan\left(\frac13\right)\right)}2}

and since cos(x + π) = -cos(x) and sin(x + π) = -sin(x),


\cos\left(\frac12 \arctan\left(\frac13\right)+\pi\right) = -\sqrt{\frac{1+\cos\left(\arctan\left(\frac13\right)\right)}2}


\sin\left(\frac12 \arctan\left(\frac13\right)+\pi\right) = -\sqrt{\frac{1-\cos\left(\arctan\left(\frac13\right)\right)}2}

Now, arctan(1/3) is an angle y such that tan(y) = 1/3. In a right triangle satisfying this relation, we would see that cos(y) = 3/√10 and sin(y) = 1/√10. Then


\cos\left(\frac12 \arctan\left(\frac13\right)\right) = \sqrt{\frac{1+\frac3{√(10)}}2} = \sqrt{(10+3√(10))/(20)}


\sin\left(\frac12 \arctan\left(\frac13\right)\right) = \sqrt{\frac{1-\frac3{√(10)}}2} = \sqrt{(10-3√(10))/(20)}


\cos\left(\frac12 \arctan\left(\frac13\right)+\pi\right) = -\sqrt{(10-3√(10))/(20)}


\sin\left(\frac12 \arctan\left(\frac13\right)+\pi\right) = -\sqrt{(10-3√(10))/(20)}

So the two square roots of z are


\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{(10+3√(10))/(20)} + i \sqrt{(10-3√(10))/(20)}\right)}

and


\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{(10+3√(10))/(20)} + i \sqrt{(10-3√(10))/(20)}\right)}

User Darlena
by
3.1k points
13 votes
13 votes

Answer:


\displaystyle \text{a. }8+6i\\\\\text{b. }√(10)\\\\\text{c. }\\\sqrt{\sqrt{(5)/(2)}+(3)/(2)}+i\sqrt{(√(10)-3)/(2)},\\-\sqrt{\sqrt{(5)/(2)}+(3)/(2)}-i\sqrt{(√(10)-3)/(2)}\\\\\\\text{d. }\\\text{Exact: }z=√(10)\left(\cos\left(\arctan\left((1)/(3)\right)\right), i\sin\left(\arctan\left((1)/(3)\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^(\circ)),i\sin(18.4^(\circ)))

Explanation:

Recall that
i=√(-1)

Part A:

We are just squaring a binomial, so the FOIL method works great. Also, recall that
(a+b)^2=a^2+2ab+b^2.


z^2=(3+i)^2,\\z^2=3^2+2(3i)+i^2,\\z^2=9+6i-1,\\z^2=\boxed{8+6i}

Part B:

The magnitude, or modulus, of some complex number
a+bi is given by
√(a^2+b^2).

In
3+i, assign values:


  • a=3

  • b=1


|z|=√(3^2+1^2),\\|z|=√(9+1),\\|z|=√(10)

Part C:

In Part A, notice that when we square a complex number in the form
a+bi, our answer is still a complex number in the form

We have:


(c+di)^2=a+bi

Expanding, we get:


c^2+2cdi+(di)^2=a+bi,\\c^2+2cdi+d^2(-1)=a+bi,\\c^2-d^2+2cdi=a+bi

This is still in the exact same form as
a+bi where:


  • c^2-d^2 corresponds with
    a

  • 2cd corresponds with
    b

Thus, we have the following system of equations:


\begin{cases}c^2-d^2=3,\\2cd=1\end{cases}

Divide the second equation by
2d to isolate
c:


2cd=1,\\(2cd)/(2d)=(1)/(2d),\\c=(1)/(2d)

Substitute this into the first equation:


\left((1)/(2d)\right)^2-d^2=3,\\(1)/(4d^2)-d^2=3,\\1-4d^4=12d^2,\\-4d^4-12d^2+1=0

This is a quadratic disguise, let
u=d^2 and solve like a normal quadratic.

Solving yields:


d=\pm i \sqrt{(3+√(10))/(2)},\\d=\pm \sqrt{\frac{{√(10)-3}}{2}}

We stipulate
d\in \mathbb{R} and therefore
d=\pm i \sqrt{(3+√(10))/(2)} is extraneous.

Thus, we have the following cases:


\begin{cases}c^2-\left(\sqrt{(√(10)-3)/(2)}\right)^2=3\\c^2-\left(-\sqrt{(√(10)-3)/(2)}\right)^2=3\end{cases}\\

Notice that
\left(\sqrt{(√(10)-3)/(2)}\right)^2=\left(-\sqrt{(√(10)-3)/(2)}\right)^2. However, since
2cd=1, two solutions will be extraneous and we will have only two roots.

Solving, we have:


\begin{cases}c^2-\left(\sqrt{(√(10)-3)/(2)}\right)^2=3 \\c^2-\left(-\sqrt{(√(10)-3)/(2)}\right)^2=3\end{cases}\\\\c^2-\sqrt{(5)/(2)}+(3)/(2)=3,\\c=\pm \sqrt{\sqrt{(5)/(2)}+(3)/(2)

Given the conditions
c\in \mathbb{R}, d\in \mathbb{R}, 2cd=1, the solutions to this system of equations are:


\left(\sqrt{\sqrt{(5)/(2)}+(3)/(2)}, \sqrt{(√(10)-3)/(2)}\right),\\\left(-\sqrt{\sqrt{(5)/(2)}+(3)/(2)},- (√(10)-3)/(2)}\right)

Therefore, the square roots of
z=3+i are:


√(z)=\boxed{\sqrt{\sqrt{(5)/(2)}+(3)/(2)}+i\sqrt{(√(10)-3)/(2)} },\\√(z)=\boxed{-\sqrt{\sqrt{(5)/(2)}+(3)/(2)}-i\sqrt{(√(10)-3)/(2)}}

Part D:

The polar form of some complex number
a+bi is given by
z=r(\cos \theta+\sin \theta)i, where
r is the modulus of the complex number (as we found in Part B), and
\theta=\arctan((b)/(a)) (derive from right triangle in a complex plane).

We already found the value of the modulus/magnitude in Part B to be
r=√(10).

The angular polar coordinate
\theta is given by
\theta=\arctan((b)/(a)) and thus is:


\theta=\arctan((1)/(3)),\\\theta=18.43494882\approx 18.4^(\circ)

Therefore, the polar form of
z is:


\displaystyle \text{Exact: }z=√(10)\left(\cos\left(\arctan\left((1)/(3)\right)\right), i\sin\left(\arctan\left((1)/(3)\right)\right)\right),\\\text{Approximated: }z=3.16(\cos(18.4^(\circ)),i\sin(18.4^(\circ)))

User Gaurav Borole
by
3.2k points