318,464 views
42 votes
42 votes

Find \: H.C.F \: of \: \\ 900 \: , 270 \\ using \: e.d.l \: \\ ( \: Euclid's \: division \: lemma \: )

H.C.F of 900 & 270 ​

User Kevin Peno
by
3.1k points

2 Answers

13 votes
13 votes

Answer:

  • 90

Explanation:

Factorize both numbers:

  • 900 = 2*2*3*3*5*5
  • 270 = 2*3*3*3*5

Common factors are:

  • 2*3*3*5

So HCF is:

  • HCF(900, 270) = 2*3*3*5 = 90
User Priyabagus
by
2.9k points
11 votes
11 votes

See Above Attachment


\Large \red \mid \: \underline {\rm {{{\color{blue}{Explanation...}}}}} \: \red \mid

We know that ,

As per Euclid Division Algorithm.


\longrightarrow \: \Large\underbrace {\rm {{{\color{red}{ \: a \: = \: bq \: + \: r \: }}}}}

  • a denotes dividend

  • b denotes divisor

  • q denotes quotient

  • r denotes remainder

━━━━━▣✦▣━━━━◆

Using Euclid Division Algorithm


\large\bf{\purple{ \hookrightarrow \: }} \tt \: \: 900 \: = \: 270 \: * \: 3 \: + \: 90

Here ,


\large\bf{\orange{ \implies \: }} \: \:r \: \\eq \: 0

Again Applying Euclid Division Algorithm


\large\bf{\purple{ \hookrightarrow \: }} \tt \: 270 \: = \: 90 \: * \: 3 \: + \: 0

Here ,


\large\bf{\orange{ \implies \: }} \: \:r \: = \: 0

As the reminder is 0 , 90 will be the greatest common divisor for the two given numbers.

So,


{\boxed{ \Large{ \blue{ \bf{ \underline{ HCF \: = \: 90}}}}}}

◆━━━━━▣✦▣━━━━━◆

Find \: H.C.F \: of \: \\ 900 \: , 270 \\ using \: e.d.l \: \\ ( \: Euclid's \: division-example-1
User Stavro
by
2.9k points