255,020 views
12 votes
12 votes
The perimeter of the rectangle below is 124 units. Find the length of side cd

The perimeter of the rectangle below is 124 units. Find the length of side cd-example-1
User Taylor Lafrinere
by
2.5k points

1 Answer

12 votes
12 votes

Answer:

CD = 38

Explanation:

Since AB = 3x + 2, CD = 3x + 2

To solve for the length of CD, we'll need to solve for x first by using the perimeter formula

Solving for x...


(3x+2)+(3x+2)+2x+2x=124


3x + 3x + 2x + 2x = 120


10x=120


x=(120)/(10)


x=12

Now that we know what x equals, plug in x into the expression of side CD

CD = 3x + 2

CD = 3(12) + 2

CD = 36 + 2

CD = 38

Therefore, the length of side CD = 38

-------------------------------------------------------

Check:

AB = CD | BC = DA

38 + 38 for AB and CD

BC + DA = 2x + 2x

BC + DA = 2(12) + 2(12)

BC + DA = 24 + 24

BC + DA = 48

38 + 38 + 48 = perimeter

perimeter = 124

User Kerrick Staley
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.