Answer:
Mechanic 1: $55 per hour
Mechanic 2: $105 per hour
Explanation:
Given
Represent the rate of the first mechanic with x and the second with y.
So, we have:
![x + y = 160](https://img.qammunity.org/2022/formulas/mathematics/high-school/kj3gln766yw0odo65ggb67etm97vldpyzz.png)
The total earnings is: $1850, so we have:
![5x + 15y = 1850](https://img.qammunity.org/2022/formulas/mathematics/high-school/p0ajvpfi8g2b31f0pyhxkbiklvwq2rns2k.png)
Required
Determine the rate of each
The equations are:
--- (1)
--- (2)
Divide (2) through by 5
--- (3)
Subtract (1) from (3)
![x - x + 3y - y = 370 - 160](https://img.qammunity.org/2022/formulas/mathematics/high-school/2dhfy4sz8l6rubts0djq9jbqac2htext7j.png)
![2y = 210](https://img.qammunity.org/2022/formulas/mathematics/high-school/va81imcgu0a685cc05pi0um5qohd55dej7.png)
Divide through by 2
![y = (210)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fk92boae2qh8s0cmyx4fk5vdxi11470zlb.png)
![y = 105](https://img.qammunity.org/2022/formulas/mathematics/high-school/42fz8zc9pfmlfaeynttvq9pa82l1yb5fav.png)
Substitute 105 for y in (1)
![x + y = 160](https://img.qammunity.org/2022/formulas/mathematics/high-school/kj3gln766yw0odo65ggb67etm97vldpyzz.png)
Make x the subject
![x = 160 - y](https://img.qammunity.org/2022/formulas/mathematics/high-school/wjrubeydul03x9lrevcuhmrguln67aezh3.png)
Substitute 105 for y
![x = 160 - 105](https://img.qammunity.org/2022/formulas/mathematics/high-school/fnulhv5r69v5xq4xavl4rgn06yho5x37uq.png)
![x = 55](https://img.qammunity.org/2022/formulas/mathematics/high-school/mukuc776ze95cor13k79mxzf0es9nnblp9.png)
Hence:
Mechanic 1: $55 per hour
Mechanic 2: $105 per hour