To implement a 3-bit counter that counts in two different orders using D flip-flops and considering the Gray code functionality, I'll provide a concise representation of the Karnaugh map, truth table, and a basic circuit diagram.
Karnaugh Map for Gray Code Counter:
Current State (Q2Q1Q0) Next State (Q2+ Q1+ Q0+)
000 001
001 011
011 010
010 110
110 111
111 101
101 100
100 000
Truth Table:
G Current State (Q2Q1Q0) Next State (Q2+ Q1+ Q0+)
0 000 001
0 001 010
0 010 011
0 011 100
0 100 101
0 101 110
0 110 111
0 111 000
1 000 001
1 001 011
1 011 010
1 010 110
1 110 111
1 111 101
1 101 100
1 100 000
Circuit Diagram Using D Flip-Flop (SR):
_____ _____ _____
G ----|D Q|-------|D Q|-------|D Q|----
| | | | | |
CLK --|>CLK Q|-----> |>CLK Q|---->|>CLK Q|---
|_____| |_____| |_____|
| | |
| _______ | _______ |
RESET --|->|D Q|-> |->|D Q|-> |--> and so on...
|__| | |__| |
| | | |
Gray ------|------|------|------|-----------
This circuit diagram represents a 3-bit counter with D flip-flops, CLK (Clock) and RESET buttons, and an additional input pin named Gray for controlling the counting sequence. The flip-flops are arranged to change states based on the Clock signal and the Gray code input, following the truth table provided above.