180,660 views
0 votes
0 votes
Look at this cylinder:

If the radius and height are doubled, then which of the following statements about its surface area will be true?

Look at this cylinder: If the radius and height are doubled, then which of the following-example-1
User Afaulconbridge
by
3.1k points

1 Answer

6 votes
6 votes
  • Height=h=8cm
  • Radius=r=4cm

We know


\boxed{\sf \star TSA_((Cylinder))=2\pi r(h+r)}


\\ \sf\longmapsto TSA_((Old\:Cylinder))=2* (22)/(7)* 4(8+4)


\\ \sf\longmapsto TSA_((Old\:Cylinder))=(176)/(7)(12)


\\ \sf\longmapsto TSA_((Old\:Cylinder))=(2112)/(7)


\\ \sf\longmapsto TSA_((Old\:Cylinder))=301.7cm^2

Now

  • New Radius=2(4)=8cm
  • New Height=2(8)=16cm


\\ \sf\longmapsto TSA_((New\:Cylinder))=2* (22)/(7)* 8(16+8)


\\ \sf\longmapsto TSA_((New\:Cylinder))=(352)/(7)(24)


\\ \sf\longmapsto TSA_((New\:Cylinder))=(8448)/(7)


\\ \sf\longmapsto TSA_((New\:Cylinder))=1204.7cm^2

So


\\ \sf\longmapsto (TSA_((New\:Cylinder)))/(TSA_((Old\:Cylinder)))=(1204.7)/(301.7)


\\ \sf\longmapsto (TSA_((New\:Cylinder)))/(TSA_((Old\:Cylinder)))=(4)/(1)


\\ \sf\longmapsto\underline{\boxed{\bf{ {TSA_((New\:Cylinder))}:{TSA_((Old\:Cylinder))}=4:1}}}

Hence our correct option is Option C

User Snehatilak
by
3.1k points