Answer:
The result of the integral is
![(\pi)/(4)(cos(4)-cos(1))](https://img.qammunity.org/2022/formulas/mathematics/college/i2qwac7nvoqhqnekld6fm1rdjgzc3d7ezf.png)
Explanation:
Polar coordinates:
In polar coordinates, we have that:
![r^2 = x^2 + y^2](https://img.qammunity.org/2022/formulas/mathematics/college/nei00a66zmgwwqgf7uobg3nfh4qp53o0xo.png)
![\int \int_(R) dA = \int \int_(R) r dr d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/uspognfmx8jxfh8z5wusspmggrebs42n36.png)
In which r is related to the radius values, while
is related to the angles in the trigonometric circle.
In this question:
R is the region in the first quadrant
In the first quadrant in the trigonometric circles, the angles go from 0 to
, which means that this are the outer limits of integration.
Between the circles with center the origin and radii 1 and 2
This means that the inner limits of integration are between 1 and 2.
The integral will be given by:
![\int \int_(R) \sin{x^2+y^(2)} dA = \int_(0)^{(\pi)/(2)} \int_(1)^(2) sin(r^2) r dr d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/l9e23j568b6awpgugjzct3fd6r8btvo78g.png)
Inner integral:
![\int_(1)^(2) sin((r^2)) r dr](https://img.qammunity.org/2022/formulas/mathematics/college/d0driibozkpi32jwwgd5osf9ondrpsc7uy.png)
By substituion,
![u = r^2](https://img.qammunity.org/2022/formulas/mathematics/college/azac57mzws7p6eu16zublegq9dyw32x9a5.png)
![du = 2r dr](https://img.qammunity.org/2022/formulas/mathematics/college/8nf0fuz0ee09tcx3u465iwyn3zrc20ylx6.png)
![dr = (du)/(2r)](https://img.qammunity.org/2022/formulas/mathematics/college/wmj1zku36a3vl6l1dciylf6s62n7154f32.png)
So
= \frac{1}{2} \int_{1}^{2} \sin{u} du[/tex]
Integral of sine is minus cosine. So
![(1)/(2)(cos(u))|_(1)^(2)](https://img.qammunity.org/2022/formulas/mathematics/college/wt446o49kjpmawqrvcp2ijthbcy3et1fth.png)
Before replacing, we substitute back u.
![(1)/(2)(cos(r^2))|_(1)^(2) = (1)/(2)(cos(4)-cos(1))](https://img.qammunity.org/2022/formulas/mathematics/college/dkhybx1enxruurmmmcjeh9bhpcph9goht8.png)
Outer integral:
![\int_(0)^{(\pi)/(2)} (1)/(2)(cos(4)-cos(1)) d\theta](https://img.qammunity.org/2022/formulas/mathematics/college/4bnlpegkgkq8goc5dsxp6kx3uqqpexs7xu.png)
![(\theta)/(2)(cos(4)-cos(1))_(0)^{(\pi)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/college/apvbuavqlics8fevr4wc1nh2u4it5z98oq.png)
![(\pi)/(4)(cos(4)-cos(1))](https://img.qammunity.org/2022/formulas/mathematics/college/i2qwac7nvoqhqnekld6fm1rdjgzc3d7ezf.png)
The result of the integral is
![(\pi)/(4)(cos(4)-cos(1))](https://img.qammunity.org/2022/formulas/mathematics/college/i2qwac7nvoqhqnekld6fm1rdjgzc3d7ezf.png)