Answer:
It can not be modeled by a linear function
Explanation:
The given parameters can be represented as:
![(x_1,y_1) = (1,64)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2hjbb443i3f4yr8nfviy27gfrfnk0500vs.png)
![(x_2,y_2) = (2,32)](https://img.qammunity.org/2022/formulas/mathematics/high-school/6qsneo4hnwqmc3pf7horxhpb3yjuworedr.png)
![(x_3,y_3) = (3,16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/2emi8as8rhsg7g7xny8slpl87zmmj6zd0w.png)
Where: x = rounds and y = players
Required:
Determine if it can be represented by a linear function
To do this, we simply calculate the slope (m)
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2022/formulas/mathematics/college/i1pa2mybgkt3dkd7j6tklhm5t9tvmo4g5v.png)
and
![m = (y_3 - y_2)/(x_3 - x_2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xiltgtxa13wdj86br21beblxtxcpl4sj0z.png)
Using:
, we have:
![m = (32 - 64)/(2 - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/tm5mm4g82f5yyxgls08ifqlc55psvpf9i5.png)
![m = (-32)/( 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/us6h2gx39cm1f5x1hnipcr2jv3f1rkw25a.png)
![m = -32](https://img.qammunity.org/2022/formulas/mathematics/high-school/w5whoh4w56r4ect1ejb9i45j5s9map1ehi.png)
Using
, we have:
![m = (16 - 32)/(3 - 2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bdflhpx3m0y9xhcklex10i020zu5usjd7p.png)
![m = (-16)/(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qvxxmzic1w8fea93r544t1jowyjuo7yfmo.png)
![m = -16](https://img.qammunity.org/2022/formulas/mathematics/high-school/gva31yhbhzrrim8pthfv50qts2dnyz6qz0.png)
Since both slopes are not the same, the relationship be modeled by a linear function