383,224 views
26 votes
26 votes
Tính tích phân sau bằng cách dùng tọa độ cực I=∫∫
\frac{1}{\sqrt{x^(2) +y^(2) } }dxdy R là miền nằm trọg góc phần tư thứ nhất thỏa mãn 4
\leq x^(2) +y^(2) \leq 9

User Matthew Rygiel
by
2.8k points

1 Answer

27 votes
27 votes

It sounds like R is the region (in polar coordinates)

R = {(r, θ) : 2 ≤ r ≤ 3 and 0 ≤ θπ/2}

Then the integral is


\displaystyle \iint_R(\mathrm dx\,\mathrm dy)/(√(x^2+y^2)) = \int_0^(\pi/2)\int_2^3 (r\,\mathrm dr\,\mathrm d\theta)/(√(r^2)) \\\\ = \int_0^(\pi/2)\int_2^3 \mathrm dr\,\mathrm d\theta \\\\ = \frac\pi2\int_2^3 \mathrm dr \\\\ = \frac\pi2r\bigg|_2^3 = \frac\pi2 (3-2) = \boxed{\frac\pi2}

User Tyler
by
3.1k points