Answer:
Steps below
Explanation:
8) x = y²/2 2rcosΘ = r²sin²Θ 2cosΘ = rsin²Θ
r = 2cosΘ/sin²Θ = 2cotΘcscΘ
9) (x+2)²+y²=4 y= rsinΘ x=rcosΘ
(rcosΘ+2)²+y²sin²Θ = 4
r²cos²Θ+4rcosΘ+4+y²sin²Θ=4
r²(sin²Θ+cos²Θ)+4rcosΘ=0
r²+4rcosΘ=0 r+4cosΘ=0
r = - 4cosΘ
10) r = 2sinΘ r=2* y/r r²=2y x²+y²=2y
x² + (y²-2y+4) = 4 x²+(y-2)² = 4
11) r = 3tanΘsecΘ = 3* (y/x) * (r/x)
1 =3y/x²
x² = 3y 3y = x²