Answer:
a = 6.65
Area = 15.84
Explanation:
By cosine rule in the given triangle,
BC² = AC² + AB² - 2(AC)(AB)cos(C)
a² = 5² + 9²- 2(5)(7)cos(28°)
a² = 25 + 81 - 61.81
a =
![√(44.19)](https://img.qammunity.org/2022/formulas/mathematics/college/jxc95o1w59r9glpxcz79r0t2gebfbny96x.png)
a = 6.65
Area of a triangle with given three sides =
![√(s(s-a)(s-b)(s-c))](https://img.qammunity.org/2022/formulas/mathematics/college/tx3mvhcwsa4si3aelxi3q5pi4k605du2cn.png)
Here, s = Average of lengths of all sides
a, b and c are the measures of the respective sides of the triangle.
s =
![(6.65+7+5)/(2)](https://img.qammunity.org/2022/formulas/mathematics/college/uekrwopentne5xzrarxfa31b3xw5mjv8yb.png)
s = 9.325
a = 6.65, b = 5 and c = 7
Now substitute these values in the formula to get the area,
Area =
![√(9.325(9.325-6.65)(9.325-5)(9.325-7))](https://img.qammunity.org/2022/formulas/mathematics/college/sgxjk16nem96loaq9u9na1j33phnyklcoe.png)
=
![√(9.325* 2.675* 4.325* 2.325)](https://img.qammunity.org/2022/formulas/mathematics/college/lkr0d2142wqef5l8uuzehu012pg3jj826j.png)
=
![√(250.8313)](https://img.qammunity.org/2022/formulas/mathematics/college/vapeeo6r1g8k7thx8ct1blticoen02lo24.png)
= 15.838
= 15.84