Given:
The system of equation is
![2x+y=8](https://img.qammunity.org/2022/formulas/mathematics/high-school/a8enzuuz9h2a1nu88ao2y78mg3cj8qnxlf.png)
![x-y=10](https://img.qammunity.org/2022/formulas/mathematics/high-school/nryw2nlyn58ok9yew50u9yfq4rcbw3n8nf.png)
To find:
The value of the system determinant.
Solution:
If two equations of a system of equations are
and
, then the system determinant is
![D=\left|\begin{matrix}a_1&b_1\\a_2&b_2\end{matrix}\right|](https://img.qammunity.org/2022/formulas/mathematics/high-school/ko8q2a6pm1pdyshs98pvqcnoxj7yq54780.png)
![D=a_1b_2-b_1a_2](https://img.qammunity.org/2022/formulas/mathematics/high-school/b4432soqt4hgvhtg8fh65zlam5x1jrwk26.png)
The given two equations are
and
.
Here,
.
![D=\left|\begin{matrix}2&1\\1&-1\end{matrix}\right|](https://img.qammunity.org/2022/formulas/mathematics/high-school/im7ukluhttkpqpouhmxeuc25ggircg1hqv.png)
![D=(2)(-1)-(1)(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/y7jul9w3z7srg7c7u8w2r4epuevslc5xd8.png)
![D=-2-1](https://img.qammunity.org/2022/formulas/mathematics/high-school/wnbd7lwhylod8cu03gq20k2womndvz0ztu.png)
![D=-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/9e2lfko4g920j0l9ax11om8e5k8olc7hdb.png)
The value of the system determinant is -3. Therefore, the correct option is C.