177k views
25 votes
PLEASE ANSWER WILL GIVE POINTS!!!!!!!!!!!

PLEASE ANSWER WILL GIVE POINTS!!!!!!!!!!!-example-1
User Rosenfeld
by
5.1k points

1 Answer

12 votes

Given:

The figure of a right triangle ABC.

To find:

The trigonometric ratios
\sin B, \tan A, \cos B.

Solution:

Using Pythagoras theorem,


Hypotenuse^2=Perpendicular^2+Base^2


AB^2=AC^2+BC^2


(10)^2=(6)^2+BC^2


100-36=BC^2


64=BC^2

Taking square root on both sides.


√(64)=BC


8=BC

So, measure of BC is 8 units.

Now,


\sin \theta=(Opposite)/(Hypotenuse)


\sin B=(AC)/(AB)


\sin B=(6)/(10)


\sin B=(3)/(5)

Similarly,


\tan \theta=(Opposite)/(Adjacent)


\tan A=(AC)/(BC)


\tan A=(6)/(8)


\tan A=(3)/(4)

And,


\cos \theta=(Adjacent)/(Hypotenuse)


\cos B=(BC)/(AB)


\cos B=(8)/(10)


\cos B=(4)/(5)

Therefore, the required trigonometric ration are
\sin B=(3)/(5), \tan A=(3)/(4), \cos B=(4)/(5).

User HaleyBuggs
by
4.7k points