125,872 views
19 votes
19 votes
If sec^2 teta (1+sin teta) (1-sin teta) = k, find k

Pls help no spamming

User Vladimir
by
3.4k points

2 Answers

27 votes
27 votes

Identities to be used :-


\boxed{\sf 1-sin^2\theta=cos^2theta}


\boxed{\sf cos^2\theta=(1)/(sec^2\theta)}

Solution:-

Let's do


\\ \sf\longmapsto k=sec^2\theta(1+sin\theta)(1-sin\theta)


\\ \sf\longmapsto k=sec^2\theta(1-sin^2\theta)


\\ \sf\longmapsto k= sec^2\theta(cos^2\theta)


\\ \sf\longmapsto k=sec^2\theta* (1)/(sec^2\theta)


\\ \sf\longmapsto k=1

User Peter Albert
by
2.7k points
9 votes
9 votes


\color{lime}\boxed{\colorbox{black}{Answer : - }}


\sec^(2) θ(1 + \sinθ)(1 - \sinθ) = k


\sec^(2) θ \: (1 - { \sin}^(2) θ) = k


{ \sec }^(2) θ \cos^(2) θ = k


\sec ^(2) θ. \frac{1}{ {sec}^(2)θ } = k


1 = k

Therefore:


\color{red}k = 1

User Macrozone
by
3.2k points