201k views
15 votes
Evaluate a--3° for Q = -3 and b = -3.

User P C
by
7.9k points

1 Answer

6 votes

Answer:

Explanation:

1. (a + b)2 = a2 + 2ab + b2; a2 + b2 = (a + b)2 − 2ab

2. (a − b)2 = a2 − 2ab + b2; a2 + b2 = (a − b)2 + 2ab

3. (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)

4. (a + b)3 = a3 + b3 + 3ab(a + b); a3 + b3 = (a + b)3 − 3ab(a + b)

5. (a − b)3 = a3 − b3 − 3ab(a − b); a3 − b3 = (a − b)3 + 3ab(a − b)

6. a2 − b2 = (a + b)(a − b)

7. a3 − b3 = (a − b)(a2 + ab + b2)

8. a3 + b3 = (a + b)(a2 − ab + b2)

9. an − bn = (a − b)(an−1 + an−2b + an−3b2 + ··· + bn−1)

10. an = a.a.a . . . n times

11. am.an = am+n

12. am

an = am−n if m>n

= 1 if m = n

= 1

an−m if m<n; a ∈ R, a 6= 0

13. (am)n = amn = (an)m

14. (ab)n = an.bn

15. a

b

n

= an

bn

16. a0 = 1 where a ∈ R, a 6= 0

17. a−n = 1

an , an = 1

a−n

18. ap/q = √q ap

19. If am = an and a 6= ±1, a 6= 0 then m = n

20. If an = bn where n 6= 0, then a = ±b

21. If √x, √y are quadratic surds and if a + √x = √y, then a = 0 and x = y

22. If √x, √y are quadratic surds and if a+ √x = b+ √y then a = b and x = y

23. If a, m, n are positive real numbers and a 6= 1, then loga mn = loga m+loga n

24. If a, m, n are positive real numbers, a 6= 1, then loga

m

n

= loga m−loga n

25. If a and m are positive real numbers, a 6= 1 then loga mn = n loga m

26. If a, b and k are positive real numbers, b 6= 1, k 6= 1, then logb a = logk a

logk b

27. logb a = 1

loga b where a, b are positive real numbers, a 6= 1, b 6= 1

28. if a, m, n are positive real numbers, a 6= 1 and if loga m = loga n, then

m = n

User Donghwan Kim
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories