7.6k views
17 votes
Using Pascal triangle, write down the binomial expansion of


{(1+y)}^(8)
simplifying all the terms.​

User Iaacp
by
4.1k points

2 Answers

9 votes

Answer:

1 + 8y + 28y² + 56y³ + 70
y^(4) + 56
y^(5) + 28
y^(6) + 8
y^(7) +
y^(8)

Explanation:

For the expansion of
(1+y)^(8)

Using the row of Pascal's triangle for n = 8 , that is the coefficients are

1 8 28 56 70 56 28 8 1

Decreasing powers of 1 from
1^(8) to
1^(0)

Increasing powers of y from
y^(0) to
y^(8)

Then


(1+y)^(8)

= 1 .
1^(8).
y^(0) + 8.
1^(7).
y^(1) + 28.
1^(6).y² + 56.
1^(5).y³ + 70.
1^(4).
y^(4) + 56. 1³.
y^(5) + 28. 1².
y^(6) + 8.
1^(1).
y^(7) + 1.
1^(0).
y^(8)

= 1 + 8y + 28y² + 56y³ + 70
y^(4) + 56
y^(5) + 28
y^(6) + 8
y^(7) +
y^(8)

User Corneliu
by
5.0k points
5 votes

Answer:

  • y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1

Explanation:

Given binomial

  • (1 + y)⁸

Expanding using Pascal triangle (attached)

Replace a and b with y and 1 in the bottom row of the triangle

  • (1 + y)⁸ =
  • (y + 1)⁸ =
  • y⁸ + 8y⁷ + 28y⁶ + 56y⁵ + 70y⁴ + 56y³ + 28y² + 8y + 1
Using Pascal triangle, write down the binomial expansion of {(1+y)}^(8) simplifying-example-1
User Kishan Sharma
by
3.7k points