Explanation:
Let x represent the first number, and y be the second number.
The first statement can be modeled as
![{x}^(2) - {y}^(2) = 15](https://img.qammunity.org/2023/formulas/mathematics/college/xa7u3q4ajn14x6ct0kzf65q8owxyrh2011.png)
The second statement can modeled as
![2 {x}^(2) - {y}^(2) = 30](https://img.qammunity.org/2023/formulas/mathematics/college/taut2wls84u89d9pwkmb0ctaprxp1tq36i.png)
If we multiply 2 both sides of the first equation,
![2( {x}^(2) - {y}^(2) ) = 15 * 2](https://img.qammunity.org/2023/formulas/mathematics/college/ipzwkjcgsbjctnun2iirklk362e1epw149.png)
![2 {x}^(2) - 2 {y}^(2) = 30](https://img.qammunity.org/2023/formulas/mathematics/college/ay53n3lc4evwcaw4hmyuaoinfr22v11r86.png)
Subsitue this for 30 in second equation,
![2 {x}^(2) - {y}^(2) = 2 {x}^(2) - {2y}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/6ux229194p5s7y6gaiah2rozhz6gb8u3yp.png)
![{y}^(2) = 0](https://img.qammunity.org/2023/formulas/mathematics/college/onz3vfx6y9gkbc5amovq6habuyk60pus3e.png)
![y = 0](https://img.qammunity.org/2023/formulas/mathematics/college/ofaqokufm3igiy6qtz3zkv9c2rfcobbln6.png)
Subsitue this for y in either equation,
So our answer is
plus or minus sqr root of 15, 0).
![(± √(15) ,0)](https://img.qammunity.org/2023/formulas/mathematics/college/zmgvzkmfflrv92og8f7susqy1xlfux7o24.png)
![x = √(15)](https://img.qammunity.org/2023/formulas/mathematics/college/rbnpzycrszf5slkcxyeibre2ep0kjcd3ge.png)
or
![x = - √(15)](https://img.qammunity.org/2023/formulas/mathematics/college/mrehnm18kvxiotzv9266722nhzc43m6bjn.png)