317,224 views
5 votes
5 votes
4sin²
(x)/(2)=3

User Mirosval
by
2.4k points

1 Answer

26 votes
26 votes

Answer:


\displaystyle x=\left \{(2\pi)/(3)+2\pi k,(4\pi)/(3)+2\pi k, (8\pi)/(3)+2\pi k, (10\pi)/(3)+2\pi k\right \}k\in \mathbb{Z}

Explanation:

Hi there!

We want to solve for
x in:


4\sin^2((x)/(2))=3

Since
x is in the argument of
\sin^2, let's first isolate
\sin^2 by dividing both sides by 4:


\displaystyle \sin^2\left((x)/(2)\right)=(3)/(4)

Next, recall that
\sin^2x is just shorthand notation for
(\sin x)^2. Therefore, take the square root of both sides:


\displaystyle \sqrt{\sin^2\left((x)/(2)\right)}=\sqrt{(3)/(4)},\\\sin\left((x)/(2)\right)=\pm \sqrt{(3)/(4)}

Simplify using
\displaystyle \sqrt{(a)/(b)}=(√(a))/(√(b)):


\displaystyle \sin\left((x)/(2)\right)=\pm \sqrt{(3)/(4)},\\\sin\left((x)/(2)\right)=\pm (√(3))/(√(4))=\pm (√(3))/(2)

Let
\phi = (x)/(2).

Case 1 (positive root):


\displaystyle \sin(\phi)=(√(3))/(2),\\\phi = (\pi)/(3)+2\pi k, k\in \mathbb{Z}, \\\\\phi =(2\pi)/(3)+2\pi k, k\in \mathbb{Z}

Therefore, we have:


\displaystyle (x)/(2)=\phi = (\pi)/(3)+2\pi k, k\in \mathbb{Z}, \\\\(x)/(2)=\phi =(2\pi)/(3)+2\pi k, k\in \mathbb{Z},\\\\\begin{cases}x=\boxed{(2\pi)/(3)+2\pi k, k\in \mathbb{Z}},\\x=\boxed{(4\pi)/(3)+2\pi k , k \in \mathbb{Z}}\end{cases}

Case 2 (negative root):


\displaystyle \sin(\phi)=-(√(3))/(2),\\\phi = (4\pi)/(3)+2\pi k, k\in \mathbb{Z}, \\\\\phi =(5\pi)/(3)+2\pi k, k\in \mathbb{Z},\\\begin{cases}x=\boxed{(8\pi)/(3)+2\pi k, k\in \mathbb{Z}},\\x=\boxed{(10\pi)/(3)+2\pi k , k \in \mathbb{Z}}\end{cases}

User Nitish Pareek
by
3.6k points